Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ann Intensive Care ; 13(1): 36, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2318382

ABSTRACT

BACKGROUND: The high-quality evidence on managing COVID-19 patients requiring extracorporeal membrane oxygenation (ECMO) support is insufficient. Furthermore, there is little consensus on allocating ECMO resources when scarce. The paucity of evidence and the need for guidance on controversial topics required an international expert consensus statement to understand the role of ECMO in COVID-19 better. Twenty-two international ECMO experts worldwide work together to interpret the most recent findings of the evolving published research, statement formulation, and voting to achieve consensus. OBJECTIVES: To guide the next generation of ECMO practitioners during future pandemics on tackling controversial topics pertaining to using ECMO for patients with COVID-19-related severe ARDS. METHODS: The scientific committee was assembled of five chairpersons with more than 5 years of ECMO experience and a critical care background. Their roles were modifying and restructuring the panel's questions and, assisting with statement formulation in addition to expert composition and literature review. Experts are identified based on their clinical experience with ECMO (minimum of 5 years) and previous academic activity on a global scale, with a focus on diversity in gender, geography, area of expertise, and level of seniority. We used the modified Delphi technique rounds and the nominal group technique (NGT) through three face-to-face meetings and the voting on the statement was conducted anonymously. The entire process was planned to be carried out in five phases: identifying the gap of knowledge, validation, statement formulation, voting, and drafting, respectively. RESULTS: In phase I, the scientific committee obtained 52 questions on controversial topics in ECMO for COVID-19, further reviewed for duplication and redundancy in phase II, resulting in nine domains with 32 questions with a validation rate exceeding 75% (Fig. 1). In phase III, 25 questions were used to formulate 14 statements, and six questions achieved no consensus on the statements. In phase IV, two voting rounds resulted in 14 statements that reached a consensus are included in four domains which are: patient selection, ECMO clinical management, operational and logistics management, and ethics. CONCLUSION: Three years after the onset of COVID-19, our understanding of the role of ECMO has evolved. However, it is incomplete. Tota14 statements achieved consensus; included in four domains discussing patient selection, clinical ECMO management, operational and logistic ECMO management and ethics to guide next-generation ECMO providers during future pandemic situations.

2.
Front Pediatr ; 9: 814033, 2021.
Article in English | MEDLINE | ID: covidwho-1686519

ABSTRACT

Thromboembolism (TE), including venous thromboembolism (VTE), arterial TE, arterial ischemic stroke (AIS), and myocardial infarction (MI), is considered a relatively rare complication in the pediatric population. Yet, the incidence is rising, especially in hospitalized children. The vast majority of pediatric TE occurs in the setting of at least one identifiable risk factor. Most recently, acute COVID-19 and multisystem inflammatory syndrome in children (MIS-C) have demonstrated an increased risk for TE development. The mainstay for the management pediatric TE has been anticoagulation. Thrombolytic therapy is employed more frequently in adult patients with ample data supporting its use. The data for thrombolysis in pediatric patients is more limited, but the utilization of this therapy is becoming more commonplace in tertiary care pediatric hospitals. Understanding the data on thrombolysis use in pediatric TE and the involved risks is critical before initiating one of these therapies. In this paper, we present the case of an adolescent male with acute fulminant myocarditis and cardiogenic shock likely secondary to MIS-C requiring extracorporeal life support (ECLS) who developed an extensive thrombus burden that was successfully resolved utilizing four simultaneous catheter-directed thrombolysis (CDT) infusions in addition to a review of the literature on the use of thrombolytic therapy in children.

3.
Lancet ; 398(10307): 1230-1238, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1440421

ABSTRACT

BACKGROUND: Over the course of the COVID-19 pandemic, the care of patients with COVID-19 has changed and the use of extracorporeal membrane oxygenation (ECMO) has increased. We aimed to examine patient selection, treatments, outcomes, and ECMO centre characteristics over the course of the pandemic to date. METHODS: We retrospectively analysed the Extracorporeal Life Support Organization Registry and COVID-19 Addendum to compare three groups of ECMO-supported patients with COVID-19 (aged ≥16 years). At early-adopting centres-ie, those using ECMO support for COVID-19 throughout 2020-we compared patients who started ECMO on or before May 1, 2020 (group A1), and between May 2 and Dec 31, 2020 (group A2). Late-adopting centres were those that provided ECMO for COVID-19 only after May 1, 2020 (group B). The primary outcome was in-hospital mortality in a time-to-event analysis assessed 90 days after ECMO initiation. A Cox proportional hazards model was fit to compare the patient and centre-level adjusted relative risk of mortality among the groups. FINDINGS: In 2020, 4812 patients with COVID-19 received ECMO across 349 centres within 41 countries. For early-adopting centres, the cumulative incidence of in-hospital mortality 90 days after ECMO initiation was 36·9% (95% CI 34·1-39·7) in patients who started ECMO on or before May 1 (group A1) versus 51·9% (50·0-53·8) after May 1 (group A2); at late-adopting centres (group B), it was 58·9% (55·4-62·3). Relative to patients in group A2, group A1 patients had a lower adjusted relative risk of in-hospital mortality 90 days after ECMO (hazard ratio 0·82 [0·70-0·96]), whereas group B patients had a higher adjusted relative risk (1·42 [1·17-1·73]). INTERPRETATION: Mortality after ECMO for patients with COVID-19 worsened during 2020. These findings inform the role of ECMO in COVID-19 for patients, clinicians, and policy makers. FUNDING: None.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Hospital Mortality/trends , Respiratory Distress Syndrome/therapy , Adult , COVID-19/mortality , Duration of Therapy , Extracorporeal Membrane Oxygenation/trends , Female , Humans , Male , Middle Aged , Patient Selection , Practice Guidelines as Topic , Registries , Respiratory Distress Syndrome/mortality , SARS-CoV-2
4.
ASAIO J ; 67(5): 485-495, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1203774

ABSTRACT

DISCLAIMER: This is an updated guideline from the Extracorporeal Life Support Organization (ELSO) for the role of extracorporeal membrane oxygenation (ECMO) for patients with severe cardiopulmonary failure due to coronavirus disease 2019 (COVID-19). The great majority of COVID-19 patients (>90%) requiring ECMO have been supported using venovenous (V-V) ECMO for acute respiratory distress syndrome (ARDS). While COVID-19 ECMO run duration may be longer than in non-COVID-19 ECMO patients, published mortality appears to be similar between the two groups. However, data collection is ongoing, and there is a signal that overall mortality may be increasing. Conventional selection criteria for COVID-19-related ECMO should be used; however, when resources become more constrained during a pandemic, more stringent contraindications should be implemented. Formation of regional ECMO referral networks may facilitate communication, resource sharing, expedited patient referral, and mobile ECMO retrieval. There are no data to suggest deviation from conventional ECMO device or patient management when applying ECMO for COVID-19 patients. Rarely, children may require ECMO support for COVID-19-related ARDS, myocarditis, or multisystem inflammatory syndrome in children (MIS-C); conventional selection criteria and management practices should be the standard. We strongly encourage participation in data submission to investigate the optimal use of ECMO for COVID-19.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Practice Guidelines as Topic , SARS-CoV-2 , COVID-19/complications , COVID-19/mortality , Extracorporeal Membrane Oxygenation/mortality , Humans , Respiratory Distress Syndrome/therapy
7.
ASAIO J ; 66(7): 707-721, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-981428

ABSTRACT

Disclaimer: The Extracorporeal Life Support Organization (ELSO) Coronavirus Disease 2019 (COVID-19) Guidelines have been developed to assist existing extracorporeal membrane oxygenation (ECMO) centers to prepare and plan provision of ECMO during the ongoing pandemic. The recommendations have been put together by a team of interdisciplinary ECMO providers from around the world. Recommendations are based on available evidence, existing best practice guidelines, ethical principles, and expert opinion. This is a living document and will be regularly updated when new information becomes available. ELSO is not liable for the accuracy or completeness of the information in this document. These guidelines are not meant to replace sound clinical judgment or specialist consultation but rather to strengthen provision and clinical management of ECMO specifically, in the context of the COVID-19 pandemic.


Subject(s)
Betacoronavirus , Consensus , Coronavirus Infections/therapy , Extracorporeal Membrane Oxygenation , Pneumonia, Viral/therapy , Practice Guidelines as Topic , COVID-19 , Humans , Pandemics , SARS-CoV-2
9.
Lancet Respir Med ; 8(5): 518-526, 2020 05.
Article in English | MEDLINE | ID: covidwho-13760

ABSTRACT

WHO interim guidelines recommend offering extracorporeal membrane oxygenation (ECMO) to eligible patients with acute respiratory distress syndrome (ARDS) related to coronavirus disease 2019 (COVID-19). The number of patients with COVID-19 infection who might develop severe ARDS that is refractory to maximal medical management and require this level of support is currently unknown. Available evidence from similar patient populations suggests that carefully selected patients with severe ARDS who do not benefit from conventional treatment might be successfully supported with venovenous ECMO. The need for ECMO is relatively low and its use is mostly restricted to specialised centres globally. Providing complex therapies such as ECMO during outbreaks of emerging infectious diseases has unique challenges. Careful planning, judicious resource allocation, and training of personnel to provide complex therapeutic interventions while adhering to strict infection control measures are all crucial components of an ECMO action plan. ECMO can be initiated in specialist centres, or patients can receive ECMO during transportation from a centre that is not specialised for this procedure to an expert ECMO centre. Ensuring that systems enable safe and coordinated movement of critically ill patients, staff, and equipment is important to improve ECMO access. ECMO preparedness for the COVID-19 pandemic is important in view of the high transmission rate of the virus and respiratory-related mortality.


Subject(s)
Coronavirus Infections/therapy , Extracorporeal Membrane Oxygenation/methods , Pneumonia, Viral/therapy , Betacoronavirus/isolation & purification , COVID-19 , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/therapy , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Practice Guidelines as Topic , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL